Multitaper.jl: A Julia package for frequency domain analysis of time series
نویسندگان
چکیده
منابع مشابه
a time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
From phase space to frequency domain: a time-frequency analysis for chaotic time series.
Time-frequency analysis is performed for chaotic flow with a power spectrum estimator based on the phase-space neighborhood. The relation between the reference phase point and its nearest neighbors is demonstrated. The nearest neighbors, representing the state recurrences in the phase space reconstructed by time delay embedding, actually cover data segments with similar wave forms and thus poss...
متن کاملJunet: A Julia Package For Network Research
Network science is moving at a rapid pace. However, mainstream analytic packages often fall behind: it is too difficult to implement new complex algorithms in them or it is hard to make them fast. With Junet, we address this problem by implementing a high-performance network analysis package in a high-level language. It allows users to write concise Julia code with performance on par with analo...
متن کاملA new technique for bearing fault detection in the time-frequency domain
This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Open Source Software
سال: 2020
ISSN: 2475-9066
DOI: 10.21105/joss.02463